NJIT News Room

Looking for something?
Search Newsroom
RSS Feed
PRESS RELEASE
Contact Information: Tanya Klein Public Relations 973-596-3433

NJIT Professor To Address Water Industry Conference At Harvard Club About Desalinating Water and More

Chemical engineer Kamalesh Sirkar, PhD, a distinguished professor at New Jersey Institute of Technology (NJIT) will discuss Thursday new technologies for desalinating and treating water.   Sirkar, an expert in membrane separation technology whose work is supported by grants from the US Department of the Interior and US Office of Naval Research, speaks at 4:30 p.m., June 8, 2006, at the Harvard Club, 27 West 44th Street, NYC.  The daylong conference, sponsored by The Wall Street Transcript, will offer businessmen, engineers and others an overview of ways to profit in the water industry.

(Note to Editors: To interview Sirkar, contact Sheryl Weinstein, 973-596-3436.)

Sirkar, who is now researching an exciting breakthrough method to desalinate sea or brackish water, holds more than 20 patents in the field of membrane separation.  Using his desalination technology, engineers will be able to recover water from brines with the highest salt concentrations.  His talk will touch on this new and upcoming research.

Sirkar will also discuss the newest advances in heat exchangers as well as what’s new in reverse osmosis.  He will highlight the work of four other NJIT professors in the departments of chemistry, and civil and environmental engineering, who are also working to bring higher levels of potable water to communities in the US and around the world.

Sirkar’s distillation process has been especially notable because once ready, it will work with brines holding salt concentrations above 5.5 percent. Currently, 5.5 percent is the highest percentage of salt in brine that can be treated using reverse osmosis. 

“We especially like our new process because we can fuel it with low-grade, inexpensive waste heat,” Sirkar said.  “Cheap heat costs less and heats brine efficiently.”

The science behind Sirkar’s membrane distillation process is simple.  The inexpensive fuel heats the water, forcing it to evaporate from the salt solution.  The cleansed vapor then travels through nano-sized pores in the membrane to wind up condensed in the cold water on the membrane’s other side. 

“The basic principles of membrane separation have been known for a long time,” said Sirkar.  “Intestines in animals and humans are semi-permeable membranes. Early experiments to study the process of separation were performed by chemists using samples of animal membranes.”

Today, membrane separation processes depend on the design of the membrane and the membrane module.   The size of the pores is often key to determining which molecular components in either a liquid or gas form will pass through the membrane.  Typically molecules flow from a region of high to low concentration.  Pressure or concentration differences on both sides of the membrane cause the actual separation to occur.  As pore size decreases, the membrane’s efficiency and selectivity increases. Membrane separation processes are used in biomedical, biotechnology, chemical, food, petrochemical, pharmaceutical and water treatment industries to separate/purify/concentrate liquid solutions or cellular suspensions or gaseous mixtures.

Typically Sirkar works with miniscule membranes, smaller in size than nanometers. A nanometer is one billionth of a meter.

Sirkar has been leading the effort in membrane separations and biotechnology at NJIT since1992.  He is the director for the Center for Membrane Technologies at NJIT and is the Foundation Professor of Membrane Separations. Sirkar has authored more than 140 peer-reviewed articles that have appeared in AIChE Journal, Biotechnology and Bioengineering,, Chemical Engineering Science, Industrial and Engineering Chemistry Research; Journal of Membrane Science; Polymer; Biotechnology Progress; Journal of American Chemical Society; Journal of Controlled Release and more. Sirkar graduated with a bachelor’s degree with honors in 1963 from the Indian Institute of Technology, Kharagpur, India.  He received his master’s degree and his doctorate from the University of Illinois, Urbana.   

Although Sirkar has no crystal ball, he envisions many future applications for his process.  “Desalinating seawater to stimulate economic development and create potable water always has an attentive audience,” he said.

NJIT, New Jersey's science and technology university, enrolls approximately 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2012 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.