News

Looking for something?
Search Newsroom
RSS Feed

Stories Tagged with "environmental engineering" from 2005

Submit Search
2014 - 12 stories
2013 - 38 stories
2012 - 38 stories
2011 - 26 stories
2010 - 19 stories
2009 - 5 stories
2008 - 10 stories
2007 - 2 stories
2006 - 2 stories
2005 - 8 stories
2004 - 2 stories
2005
A nanoparticle commonly used in industry could have a damaging effect on plant life, according to a report by Daniel J. Watts, executive director of the York Center for Environmental Engineering and Science and Panasonic Chair in Sustainability at NJIT. "Before this study, there was an assumption that nanoparticles had no effect on plants,” said Watts. “This study makes the observation that seedlings can interact with nanoparticles such as alumina, which can have a harmful effect on seedlings and perhaps stunt the growth of plants.“ >>
A nanoparticle commonly used in industry could have a damaging effect on plant life, according to a report by an environmental scientist at New Jersey Institute of Technology (NJIT).The report, published in a recent issue of “Toxicology Letters,” shows that nanoparticles of alumina (aluminum oxide) slowed the growth of roots in five species of plants -- corn, cucumber, cabbage, carrot and soybean. Alumina nanoparticles are commonly used in scratch-resistant transparent coatings, sunscreen lotions that provide transparent-UV protection and environmental catalysts that reduce pollution, said Daniel J. Watts, PhD, the lead author of the study.“Before this study there was an assumption that nanoparticles had no effect on plants,” said Watts, executive director of the York Center for Environmental Engineering and Science and Panasonic Chair in Sustainability at NJIT. “This study makes the observation that seedlings can interact with nanoparticles such as alumina, which can have a harmful effect on seedlings and perhaps stunt the growth of plants.  “Other nanoparticles included in the study, such as silica, did not show this effect,” Watts added. He did the study with Ling Yang, a doctoral student who recently graduated from NJIT.The authors conducted the study by allowing seeds to germinate on wet filter paper in Petri dishes, after which they added known quantities of nano-sized alumina suspended in water. The control portion of the experiment was treated only with water, and the authors observed the experiment for seven days. During that time, they measured the differences in the growth of the plants' roots, which were shown to be statistically significant. “We suppose that the surface characteristics of the nanoparticles played an important role in slowing the growth of the roots,” said Watts. “The smaller the particle, the larger is the total amount of surface area per unit weight. So the smaller you make the particles, the larger is the surface area, which we suspect is what contributes to the growth-slowing interaction between the seeds and the nanoparticles. The small size of the nanoparticles may be changed by the nanoparticles aggregating or clumping together.”But what is still not understood, said Watts, is the nature of the interaction between the nanoparticle and the root of the seed. “What is the mechanism of the interaction between the particle and the root? That we don't know as yet,” he said. Nanoparticles can be deposited into air by exhaust systems, chimneys or smoke stacks, said Watts. The particles can also mix with rainwater and snow and gradually work their way into soil. It is difficult to take results from a lab experiment and conclude that is what happens in the real world, said Watts. “But we speculate that air deposits of nanoparticles or water transport of them are ways in which nanoparticles could mix with plant life,” he said. The York Center for Environmental Engineering and Science at NJIT conducts research programs to achieve an ecologically sustainable future by correcting environmental damage caused by past action, and improving current environmental technology and practice, while providing for the economic and equity needs of people in New Jersey and throughout the world.  The York Center has been developed from research and development programs that started in 1984 and involves researchers from most disciplines at the university. >>
"CORSIM-A Microscopic Traffic Simulation Model for Integrated Networks" is the topic of a lecture by Steven Chien, PhD, associate professor, department of civil and environmental engineering at NJIT, on Nov. 14, 11:30 a.m.–1 p.m., Colton Hall, Room 416. Contact: Professor Raj Khera, 973-596-2475; e-mail khera@njit.edu. >>
Michael Hornsby, adjunct faculty member in the department of civil and environmental engineering, received an Excellence in teaching award during NJIT's annual university convocation.  >>
John Schuring, PhD and PE, is professor of civil and environmental engineering at New Jersey Institute of Technology (NJIT). He holds several U.S. patents for developing methods of treating polluted soil. He is an expert in pile foundations, differential settlement of structures, and landslides. He has worked on engineering projects for the U.S. Environmental Protection Agency, the U.S. Department of Energy and the New Jersey Department of Transportation. >>
“Pumping the floodwater out of New Orleans is the most pressing environmental issue facing the city right now,” says Hsin-Neng Hsieh, PhD, PE, professor of civil and environmental engineering at NJIT. “There is just too much water and engineers can't use existing waste treatment technologies until the water recedes." >>
“It appears that the levee failures in New Orleans were induced by subsurface seepage through the soils, not by overtopping,” said John Schuring, PhD and PE, professor of civil and environmental engineering at NJIT. “Given the fact that the levees were built and retrofitted many times over the years, and also given the fact that other weaknesses in the soil may exist, care must be taken when the city is dewatered to avoid another failure.” >>
John Schuring, PhD (at right), chairman of the civil and environmental engineering department at NJIT, was one of four individuals who were recognized for their work with the ACE Mentor Program at its fifth annual scholarship breakfast on June 9 at the Newark Club. The ACE Mentor Program is designed to help high school students become aware of college and career opportunities in the design and construction field. >>