The Sponsored Research Lifecycle

Part I: Finding a Sponsor

Institute Workshop Series
October 2, 2008

Dr. Donald H. Sebastian
Sr. Vice President of Research & Development
NJ Institute of Technology
Newark, NJ 07102
sebastian@njit.edu
Institutional Motivations

- Research Binds Together the Mission Elements
 - Research Experience vitalizes *Instructional Activities*
 - Research Accomplishment informs our *Public Service*
 - Research Environment serves Economic *Development*

- Research is an Important Revenue Stream
 - Faculty & Staff Salary Offsets
 - Equipment Purchases
 - Student Support
 - F&A Recovery

- Research Accomplishments Drive Public Recognition
 - Smart Gun
 - Mall & School Security
 - Stem Cell
 - Traffic Congestion
Scholarly Research

Good academic research represents new contributions to fundamental knowledge derived from peer reviewed grant proposals awarded from the premier scientific agencies, and resulting in peer reviewed publications appearing in archival journals.
Models of Scholarship

<table>
<thead>
<tr>
<th>Scholarship of Discovery</th>
<th>Scholarship of Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>is generally what is understood as "research." It is committed to developing new knowledge, and focuses on the question, "What is to be known, what is yet to be found"</td>
<td>is focused on developing perspectives on knowledge. It is... serious, disciplined work that seeks to interpret, draw together, and bring new insight to bear on original research</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scholarship of Application</th>
<th>Scholarship of Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>focuses on the questions, "How can knowledge be applied to consequential problems? How can it be helpful to individuals as well as institutions?"</td>
<td>Pedagogical procedures must be carefully planned, continuously examined, and relate directly to the subject taught</td>
</tr>
</tbody>
</table>

Grant Lifecycle

A successful proposal is the outcome of a process of engagement with the sponsor, not the starting point. The process is not unlike any customer relationship activity that begins with relationship building, discovery of customer needs, advocacy for your solution and support of the customer through implementation. If successfully managed this cycle can be repeated endlessly. Skipping steps or undervaluing their importance is a recipe for failure. The process begins with identifying the most likely “customers” for your “product’ – the research that you want to pursue. That is the topic for today’s discussion.
Grantsmanship is a Customer Relations Exercise

Supporting

Relating

Advocating

Discovering

The Project

The Proposal

No Help, No Need

No Satisfaction, No Trust

Building Customer Relationships:
The Counselor Salesperson.
Wilson Learning Corp.

New Jersey's Science & Technology University

THE EDGE IN KNOWLEDGE
Who Sponsors Academic Research?
Federal Funding is the primary sustenance for academic research.

Willie Sutton

"Go where the money is... and go there often."
Federal Government

Executive Departments
- Department of Agriculture (USDA)
- Department of Commerce (DOC)
- Department of Defense (DOD)
- Department of Education (ED)
- Department of Energy (DOE)
- Department of Health and Human Services (HHS)
- Department of Homeland Security (DHS)
- Department of Housing and Urban Development (HUD)
- Department of Justice (DOJ)
- Department of Labor (DOL)
- Department of State (DOS)
- Department of the Interior (DOI)
- Department of the Treasury
- Department of Transportation (DOT)
- Department of Veterans Affairs (VA)

Independent Agencies
- Central Intelligence Agency (CIA)
- Environmental Protection Agency (EPA)
- Federal Communications Commission (FCC)
- Institute of Museum and Library Services
- National Aeronautics and Space Administration (NASA)
- National Council on Disability
- National Endowment for the Arts
- National Endowment for the Humanities
- National Science Foundation (NSF)
- Small Business Administration (SBA)
- And many more…

http://www.usa.gov/Agencies/Federal/Executive.shtml
Top 6 Agencies for Academic Research

* Accounted for 97% of all Federal R&D to Universities in 2006

Trends in Basic Research Funding

![Graph showing changes in share of academic R&D in selected S&E fields: 1975-2006 and 1996-2006.](image)
How do Mission-Oriented Agencies Work?
Defense “S&T” Funding Trends
US Army Research Development & Engineering Command

http://www.rdecom.army.mil/rdecom_index.html
Welcome to the Army Research Office:

The U.S. Army Research Laboratory's Army Research Office (ARO) mission is to serve as the Army's premier extramural basic research agency in the engineering, physical, information and life sciences; developing and exploiting innovative advances to insure the Nation's technological superiority. Basic research proposals from educational institutions, nonprofit organizations, and private industry are competitively selected and funded. ARO's research mission represents the most long-range Army view for changes in its technology. ARO priorities fully integrate Army-wide, long-range planning for research, development, and acquisition. ARO executes its mission through conduct of an aggressive basic science research program on behalf of the Army to assure cutting-edge scientific discoveries and the general store of scientific knowledge will be optimally used to develop and improve weapons systems that establish and maintain force dominance. The ARO research program consists primarily of extramural academic research efforts consisting of single investigator efforts, university-affiliated research centers, and specially tailored outreach programs. Each approach has its own objectives and set of advantages. Programs are formulated in consultation with the Army Research Laboratory, the Research, Development and Engineering Command's Research, Development and Engineering Centers, the Army Medical Research and Materiel Command, the Army Corps of Engineers, and the Army Research Institute for the Behavioral and Social Sciences. The programs are also jointly coordinated and planned through the Defense Science and Technology Reliability process under the Basic Research Panel.

ARO Functions:

- Accelerating research results transition to applications in all stages of the research and development cycle.
- Strengthening academic, industrial, and nonprofit laboratories research infrastructures which serve the Army.
- Focus on those research topics that support technologies vital to the Army's future force, combating terrorism and new emerging threats.
- Directing efforts in research areas relating to new opportunities for Army applications and which underscore the role of affordability and dual-use, especially as they provide new force operating capabilities and emerging threats.
- Leveraging the science and technology of other defense and Government laboratories, academia and industry, and appropriate organizations of our allies.
- Fostering scientist and engineer training in the disciplines critical to Army needs.
- Actively seeking creative approaches to enhance education and research programs at historically Black colleges and universities and at minority institutions.
ARL's mission is to ... provide innovative science, technology, and analyses to enable full-spectrum operations.

The U.S. Army Research Laboratory (ARL) of the Army Materiel Command is the Army's corporate, or central, laboratory for materiel technology. Its diverse assortment of unique facilities and its workforce of government engineers and scientists comprise the largest source of world-class integrated research and analysis in the Army. ARL's programs consist of basic and applied research and survivability/lethality analysis. ARL consists of six directorates and the Army Research Office. These organizations focus on technology areas critical to strategic dominance across the entire spectrum of operations:

- Computational and Information Sciences Directorate (CISD) - conducts a broad spectrum of research focused on high bandwidth communication, advanced command and control techniques, battlefield visualization, weather decision aids, and defensive information operations;

- Human Research and Engineering Directorate (HRED) - scientific research and technology directed toward optimizing Soldier performance and Soldier-machine interactions to maximize battlefield effectiveness, and to ensure that soldier performance requirements are adequately considered in system design;

- Sensors and Electron Devices Directorate (SEDD) - vertically integrated research and development for developing advanced solid-state components and state-of-the-art sensor systems;

- Survivability and Lethality Analysis Directorate (SLAD) - integrated survivability and lethality analysis of Army systems and technologies across the full spectrum of battlefield threats and environments as well as analysis tools, techniques, and methodologies;

- Vehicle Technology Directorate (VTD) - addresses propulsion and structural engineering technologies for both air and ground vehicles in a leveraged partnership with NASA;

- Weapons and Materials Research Directorate (WMRD) - material and weapons research to develop the technologies for future land combat systems;

- Army Research Office (ARO) - scientific and far-reaching technological discoveries in extramural organizations (educational institutions, nonprofit organizations, and private industry).
Services - Extramural & Intramural R&D

Army Research Office www.aro.army.mil/
Army Research Labs www.arl.army.mil/

Office of Naval Research www.onr.navy.mil/
Naval Research Labs www.nrl.navy.mil/
Dept. of Navy Research, Development & Acquisition acquisition.navy.mil/acquisition_one_source/links/systems_commands

Air Force Research Labs www.afrl.af.mil/
Air Force Material Command www.afmc.af.mil/
Where else does DOD do R&D?
Defense Advanced Research Projects Agency

Technical Offices Programs

- Defense Sciences Office (DSO) Programs
- Information Processing Technology Office (IPTO) Programs
- Information Exploitation Office (IXO) Programs
- Microsystems Technology Office (MTO) Programs
- Strategic Technology Office (STO) Programs
- Tactical Technology Office (TTO) Programs

Last Updated: February 26, 2007
RESEARCH AND DEVELOPMENT ENTERPRISE

Delivering innovative science and technology to combat WMD.

DTRA is taking the fight to the enemy by developing and deploying technologies for our warfighters as part of our counterproliferation efforts. We act as the near-term interface between complex research and development efforts and the warfighter.

ENTERPRISE:

Research and Development

We identify, conduct, and deliver innovative science and technology, through systematic, risk-balanced processes, that enable America to combat Weapons of Mass Destruction.

Our system engineering activities provide for Research, Development, and Acquisition to support the needs of Combatant Commanders, Services, and DTRA.

DIRECTORATE:

- Chemical Biological Technologies Directorate
- Nuclear Technologies Directorate
- Counter WMD Technologies Directorate
- Systems Engineering Technologies Directorate

TOPICS OF INTEREST

- Fact Sheets
- History
- Library
- Organization
- Photo Gallery
- Programs
- Related Links

http://www.dtra.mil
SAVE THE DATE: Technical Support Working Group
Advanced Planning Briefing for Industry

February 22, 2007: The Technical Support Working Group (TSWG) in cooperation with the National Defense Industrial Association (NDIA) is holding an Advanced Planning Briefing for Industry (APBI). For the most current information on this meeting, please visit http://www.ndia.org/meetings/7090 as the date approaches.

T1926 Long Range Non-Line-of-Sight Wireless Video Transmission System

The Long Range Non-Line-of-Sight Wireless Video Transmission System has remarkably improved video surveillance in difficult environments. By using advanced digital transmission technology, the system overcomes the shortcomings of current analog systems, such as ghost imaging and high electronic interference, especially in dense urban environments. The system generally has a range of two to three miles and it can be configured with several different power ratings. Commonly used video cameras and recording equipment are compatible with this transmission system. DTC Communications Inc. of Nashua, NH, (www.dtccom.com) developed the system and sells the product commercially.

http://www.tswg.gov/tswg/home/home.htm
Power of the Program Manager

Since the whole point of peer review is to ensure technical integrity, ONR meets this important requirement through peer review, not of proposals from investigators, but of the program officer’s portfolio. Thus the program officer, and not the individual scientist in a university, laboratory, or institute, undergoes the review. We have found that this policy — peer review of portfolios, not proposals — lets ONR take a chance on young investigators who haven't yet established the kind of reputation and publication record that peer reviewers commonly look for in proposals. It also permits ONR to take a shot at potentially disruptive technologies that have yet to find their way into mainstream thinking.

http://www.dau.mil/pubs/pm/pmpdf00/petrkn-d.pdf
What are non-DOD Opportunities?
Science and Technology Organization

About the Directorate >> Organization

Leadership

- Under Secretary for Science and Technology, Jay M. Cohen

Divisions

- Explosives Division focuses on the detection, mitigation, and response to explosives such as improvised explosive devices and suicide bombers.
- Chemical and Biological Division conducts analyses for better characterization and prioritization of the threat, develops detection systems to provide early warning of a possible attack so as to minimize exposure and speed treatment of victims, conducts forensic analyses to support attribution, and works with federal partners who have lead responsibilities in decontamination and restoration, agrodefense, and food security.
- Border and Maritime Security Division develops, evaluates, and demonstrates technologies and tools for better securing our land and maritime ports of entry. We are pilot testing surveillance and monitoring capabilities to cover vast expanses of remote border and developing and testing security devices and inspection methods to secure the large volume of cargo entering U.S. ports daily.
- Command, Control, & Interoperability Division focuses on operable and interoperable communications for emergency responders, security and integrity of the Internet, and development of automated capabilities that "connect-the-dots" to recognize potential threats.
- Human Factors Division applies the social and behavioral sciences to improve detection, analysis, and understanding of threats posed by individuals, groups, and radical movements; to support the preparedness, response and recovery of communities impacted by catastrophic events; and to advance national security by integrating human factors into homeland security technologies.
- Infrastructure/Geophysical Division focuses on identifying and mitigating the vulnerabilities of the 17 critical infrastructure and key assets that keep our society and economy functioning.
NASA seeks to develop innovative technologies, knowledge, and infrastructures to support decisions for human exploration and to promote international and commercial participation in U.S. exploration efforts.

NASA develops a wide spectrum of technology and conducts research aimed at improving the safety and efficiency of America's air transportation system.

http://www.nasa.gov/audience/forresearchers/researchbizops/index.html
For Researchers

Energy's education programs help ensure an adequate supply of scientists, engineers and technicians for energy-related research, production activities, and the transfer of technology. The advancement of science, mathematics and technology education is an essential part of Energy's mission.

These Energy offices fund the bulk of the research grants:

- **Office of Energy Efficiency and Renewable Energy**
 Alternative and renewable energy, energy efficiency, business development, and superconductivity.

- **Office of Fossil Energy**
 Electric power, oil, gas, and coal technologies.

- **Office of Nuclear Energy, Science and Technology**
 Nuclear energy, isotopes, and nuclear facilities management.

- **Office of Science**
 Basic science, advanced computing, biological and environmental research, fusion, high energy and nuclear physics, materials, and medical.

http://www.energy.gov/forresearchers.htm
DOE Laboratories

- **Ames Laboratory**: Chemical, engineering, materials, mathematical and physical sciences.
- **Argonne National Laboratory**: Basic science research in the physical, life, and env. sciences.
- **Brookhaven National Laboratory**: Basic and applied science and technology research.
- **Fermi National Accelerator Laboratory**: High-energy physics.
- **Idaho National Engineering and Environmental Laboratory**: Science and engineering solutions, and environmental cleanup.
- **Lawrence Berkeley National Laboratory**: Advanced materials, life sciences, energy efficiency, detectors, and accelerators.
- **Lawrence Livermore National Laboratory**: Science and engineering related to national security and nuclear weapons.
- **Los Alamos National Laboratory**: Science and engineering related to national security and nuclear weapons.
- **National Energy Technology Laboratory**: Fossil energy exploration, supply, and end-use technologies.
- **National Renewable Energy Laboratory**: Renewable energy and efficiency.
- **Oak Ridge National Laboratory**: Neutron, chemical & radiochemical, biological, energy, engineering and robotics, environmental, high performance computing, materials.
- **Pacific Northwest National Laboratory**: Environmental, energy, chemical, biotechnology/medical, security & information technology, instrumentation, and materials.
- **Princeton Plasma Physics Laboratory**: Fusion energy and plasma physics research.
- **Sandia National Laboratories**: Science and eng. related to nat’l security and nuclear weapons.
- **Savannah River National Laboratory**: Applied research and development related to national and homeland security, and environmental and chemical processing technology.
- **Stanford Linear Accelerator Center**: Electron accelerators, high-energy physics, and synchrotron radiation research.
- **Thomas Jefferson National Accelerator Facility**: Nuclear physics, accelerator science.
Research

Nutrition, Food Safety/Quality

- Human Nutrition (NP #107)
- Food Safety (animal and plant products) (NP #108)
- Quality and Utilization of Agricultural Products (NP #306)

Animal Production and Protection

- Food Animal Production (NP #101)
- Animal Health (NP #103)
- Veterinary, Medical, and Urban Entomology (NP #104)
- Aquaculture (NP #106)

Natural Resources and Sustainable Agricultural Systems

- Water Resource Management (NP #201)
- Soil Resource Management (NP #202)
- Air Quality (NP #203)
- Global Change (NP #204)
- Rangeland, Pasture, and Forages (NP #205)
- Managed and Byproduct Utilization (NP #206)
- Integrated Agricultural Systems (NP #207)
- Water Availability and Watershed Management (NP #211)
- Pasture, Forage, Turf, and Rangeland Systems (NP #215)
- Agricultural System Competitiveness and Sustainability (NP #216)
- Bioenergy and Energy Alternatives (NP #307)

Crop Production and Protection

- Plant Genetic Resources, Genomics and Genetic Improvement (NP #301)
- Plant Biological and Molecular Processes (NP #302)
- Plant Diseases (NP #303)
- Crop Protection and Quarantine (NP #304)
- Crop Production (NP #305)
- Methyl Bromide Alternatives (NP #308)
Dear Fellow Citizens:

I am proud and privileged to lead the U.S. Department of Transportation (DOT). The American people deserve the safest, most secure, and most efficient transportation system possible.

Our top priorities at DOT are to keep the traveling public safe and secure, increase their mobility, and have our transportation system contribute to the nation's economic growth.

DOT employs almost 60,000 people across the country, in the Office of the Secretary of Transportation (OST) and its operating administrations and bureaus, each with its own management and organizational structure:

- Office of the Secretary of Transportation (OST)
- National Highway Traffic Safety Administration (NHTSA)
- Federal Aviation Administration (FAA)
- Office of the Inspector General (OIG)
- Federal Highway Administration (FHWA)
- PHMSA - Pipeline and Hazardous Materials Safety Administration
- Federal Motor Carrier Safety Administration (FMCSA)
- RITA - Research and Innovative Technology Administration
- Federal Railroad Administration (FRA)
- Saint Lawrence Seaway Development Corporation (SLSDC)
- Federal Transit Administration (FTA)
- Surface Transportation Board (STB)
- Maritime Administration (MARAD)
What About Grant Agencies?
Welcome! A message from the ENG AD

Colleagues:

Welcome to the National Science Foundation’s Directorate for Engineering (ENG), the premier source of federal support for university-based, fundamental engineering research. By supporting the best ideas through a proven system of merit review, ENG helps to advance the frontier of research through education, discovery, and innovation. The fruits of this research enable a brighter future, a more secure nation, and a prosperous society.

As the past few years have demonstrated, the pace of engineering discovery and innovation is a rapid one. With growing research investments by the United States and other nations, that pace will continue to accelerate. To ensure that the NSF is best able to support the U.S. engineering enterprise and secure our international leadership in innovation, the Engineering Directorate has a new structure effective October 1, 2006. This reorganization was critical to address the growing multidisciplinary nature of engineering, and to ensure that we are able to respond quickly to new opportunities and new horizons.

A description of this process, its rationale, and anticipated outcomes can be found here: http://www.nsf.gov/eng/general/reorg/.

As NSF and the Directorate for Engineering look to the future, particularly in the context of the President’s American Competitiveness Initiative, we see great opportunities to advance the frontier in areas ranging from nanomanufacturing and bioengineering to new methods of earthquake and hurricane protection.

The greatest advances, however, will most likely come from areas that are just now materializing on the horizon. With that in mind, I want to stress that it is ENG’s mission to partner with the engineering research community to ensure that the nation enjoys the benefits of this work in the years to come.
Electrical, Communications and Cyber Systems Division (ECCS)

The Division of Electrical, Communications and Cyber Systems (ECCS) addresses fundamental research issues underlying device and component technologies, power, controls, computation, networking, communications and cyber technologies. ECCS supports the integration and networking of intelligent systems principles at the nano, micro and macro scales for a variety of application domains in healthcare, homeland security, disaster mitigation, energy, telecommunications, environment, transportation, manufacturing, and other systems-related areas. ECCS envisions a research community that will address major technological challenges for the next generation of devices and systems due to convergence of technologies and increased emphasis on interdisciplinary research to achieve the goals of the American Competitiveness Initiative in leading the world in innovation.

ECCS has a goal to integrate education into its research programs to ensure the preparation of a diverse workforce for the 21st Century that can enable innovative advances in emerging technologies as drivers of the global economy. This vision is encouraged and strengthened by the Engineer of 2020 report of the National Academy of Engineering that foresees a “bewildering array of new technologies” confronting an engineering profession that must be educated in research, design and development, as well as possessing the attributes of strong analytical skills, creativity, ingenuity, professionalism, and leadership. ECCS strengthens its programs through linkages to other areas of engineering, science, industry, and government.

The ECCS Division is organized around the following three programs that focus on research and educational issues of device and component technologies, network and computational technologies, and systems engineering:

- Electronics, Photonics and Device Technologies (EPDT)
- Power, Controls and Adaptive Networks (PCAN)
- Integrative, Hybrid and Complex Systems (IHCS)

The management of these programs involves a team approach by the Division Director, Senior Engineering Advisor, Program Directors and staff of the ECCS division, to reflect the increasing convergence of traditional disciplinary topics and the need for interdisciplinary approaches to new problem areas.
What About Private Foundations?
Top 10 Foundations for Science & Engineering

<table>
<thead>
<tr>
<th>Foundation Name</th>
<th>State</th>
<th>Dollar Amount</th>
<th>No.</th>
<th>Avg. Grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>The David and Lucile Packard Foundation</td>
<td>CA</td>
<td>$43,484,910</td>
<td>32</td>
<td>$1,358,903</td>
</tr>
<tr>
<td>The Robert A. Welch Foundation</td>
<td>TX</td>
<td>24,551,000</td>
<td>165</td>
<td>148,794</td>
</tr>
<tr>
<td>Alfred P. Sloan Foundation</td>
<td>NY</td>
<td>22,229,022</td>
<td>169</td>
<td>131,533</td>
</tr>
<tr>
<td>Wallace H. Coulter Foundation</td>
<td>FL</td>
<td>12,900,666</td>
<td>6</td>
<td>2,150,111</td>
</tr>
<tr>
<td>The Kresge Foundation</td>
<td>MI</td>
<td>12,386,600</td>
<td>15</td>
<td>825,773</td>
</tr>
<tr>
<td>Intel Foundation</td>
<td>OR</td>
<td>12,262,218</td>
<td>145</td>
<td>84,567</td>
</tr>
<tr>
<td>The Ford Foundation</td>
<td>NY</td>
<td>11,231,600</td>
<td>33</td>
<td>340,352</td>
</tr>
<tr>
<td>Gordon and Betty Moore Foundation</td>
<td>CA</td>
<td>10,833,013</td>
<td>5</td>
<td>2,166,603</td>
</tr>
<tr>
<td>John & Catherine MacArthur Foundation</td>
<td>IL</td>
<td>10,707,000</td>
<td>17</td>
<td>629,824</td>
</tr>
<tr>
<td>W. M. Keck Foundation</td>
<td>CA</td>
<td>10,150,000</td>
<td>13</td>
<td>780,769</td>
</tr>
<tr>
<td>Top 10 Total</td>
<td></td>
<td>$170,729,029</td>
<td>600</td>
<td>284,548</td>
</tr>
<tr>
<td>Top 50 Total</td>
<td></td>
<td>$331,499,155</td>
<td>1,267</td>
<td>261,641</td>
</tr>
</tbody>
</table>

http://foundationcenter.org/findfunders/statistics/pdf/04_fund_sub/2003/50_found_sub/f_sub_u_03.pdf
Where Do I Find Opportunities?
Grants.gov is your source to FIND and APPLY for Federal government grants. There are over 1,000 grant programs offered by all Federal grant making agencies. The U.S. Department of Health and Human Services is proud to be the managing partner for Grants.gov, an initiative that is having an unparalleled impact on the grant community. Grants.gov allows organizations to electronically find and apply for more than $400 billion in Federal grants.

PLEASE NOTE: If you are in need of personal financial assistance such as Social Security/Supplemental Security Income, Medicaid or State Social Services, you can find help at www.govbenefits.gov. This type of individual assistance is not available on this website.

What’s New This Week at Grants.gov

New Opportunities This Week

Can I Submit the New Version of Microsoft Word to Grants.gov?

Research & Related Form Tips

Note for HUD Applicants

Daylight Saving Time Plan

NIH March 5 Receipt Date for Renewal, Resubmission and Revision R01 Applications

Applicant Alert
For the Research & Education Community

Special Notice

Public Affairs Support for PIs via PIs

Special Notice

The NSF Web site will be unavailable due to maintenance work from 8:00 P.M. EDT Friday, March 30 until 6:00 A.M. EDT Monday, April 2, 2007. We apologize for the inconvenience.

Recently Announced Funding Opportunities

Nanotechnology Undergraduate Education (NUE) in Engineering (NSF 07-554) Posted March 13, 2007

Small Business Innovation Research and Small Business Technology Transfer Programs Phase I Solicitation FY-2008 (NSF 07-551) Posted March 9, 2007

Antarctic Artists and Writers Program (NSF 07-550) Posted March 9, 2007

Antarctic Research (NSF 07-549) Posted March 7, 2007

Upcoming Due Dates

Discovery Research K-12
(NSF 06-593) Full Proposal: March 28, 2007

Domestic Nuclear Detection Office/National Science Foundation Academic Research Initiative
(NSF 06-597) Full Proposal: May 1, 2007
Community of Science (COS) is the leading global resource for hard-to-find information critical to scientific research and other projects across all disciplines. We aggregate valuable information so you spend less precious time and money searching for the information you need, leaving you more time and money for your projects.

Find funding with COS Funding Opportunities: search the world's most comprehensive funding resource, with more than 22,000 records representing nearly 400,000 opportunities, worth over $33 billion.

Identify experts and collaborators with COS Expertise: search among 500,000 profiles of researchers from 1,600 institutions throughout the world. Discover who's doing what -- current research activity, funding received, publications, patents, new positions and more.

Promote your research with a COS Profile: showcase your research and expertise among researchers and scholars from universities, corporations and nonprofits in more than 170 countries. Use convenient tools to keep your CV updated and accessible.
Sign in
You have not signed in.

Kindly enter your username and password in the box right. Then click “Sign in” to proceed.

If you do not have a username and password, read on.

Reasons why you are being denied access may include:

- You are attempting to access the site from off campus. To do this you must previously register for a username and password while you are on campus. When you return to your desk, obtain a username and password by clicking here.

- You are on campus but your institution has not purchased a site license;

- You are on campus, your institution has purchased a site license, but your computer is not on the list of internet segments that your institution has registered for access. In this case, kindly visit the link below. This will tell you the IP address of the computer you are sitting at. Then email the address to us at info@ResearchResearch.com. We will contact your site administrator, who will contact you to arrange access.

Other sites Find my IP address.

http://www.researchresearch.com
What are Federal Earmarks?
Federal Earmarks by Agency

- **2003:** $2.01-billion
 - Health and Human Services: 10%
 - Agriculture: 10%
 - Education: 8%
 - Transportation: 8%
 - Other: 34%

Funds for congressionally earmarked academic research projects: 1980–2002

(Millions of dollars)

<table>
<thead>
<tr>
<th>Year</th>
<th>Earmarked funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>11</td>
</tr>
<tr>
<td>1981</td>
<td>0</td>
</tr>
<tr>
<td>1982</td>
<td>9</td>
</tr>
<tr>
<td>1983</td>
<td>77</td>
</tr>
<tr>
<td>1984</td>
<td>39</td>
</tr>
<tr>
<td>1985</td>
<td>104</td>
</tr>
<tr>
<td>1986</td>
<td>111</td>
</tr>
<tr>
<td>1987</td>
<td>163</td>
</tr>
<tr>
<td>1988</td>
<td>232</td>
</tr>
<tr>
<td>1989</td>
<td>299</td>
</tr>
<tr>
<td>1990</td>
<td>248</td>
</tr>
<tr>
<td>1991</td>
<td>470</td>
</tr>
<tr>
<td>1992</td>
<td>708</td>
</tr>
<tr>
<td>1993</td>
<td>763</td>
</tr>
<tr>
<td>1994</td>
<td>651</td>
</tr>
<tr>
<td>1995</td>
<td>600</td>
</tr>
<tr>
<td>1996</td>
<td>296</td>
</tr>
<tr>
<td>1997</td>
<td>440</td>
</tr>
<tr>
<td>1998</td>
<td>528</td>
</tr>
<tr>
<td>1999</td>
<td>797</td>
</tr>
<tr>
<td>2000</td>
<td>1,044</td>
</tr>
<tr>
<td>2001</td>
<td>1,668</td>
</tr>
<tr>
<td>2002</td>
<td>1,837</td>
</tr>
</tbody>
</table>
The Federal Budgeting Process

Jan

- House Appropriations Sub-committee
- House Appropriations Committee
- Full House Approval

House-Senate Conference

Presidential Approval

Jul – Jan…

Sep – Feb…

President’s Budget

Senates Appropriations Sub-committee

Senate Appropriations Committee

Full Senate Approval

President's Budget
Building the Sponsor Relationship

- Know yourself
- Expand Your vision
- Understand the Sponsors’ Needs
- Develop a Relationship with the Program Manager
 - Call
 - Send a 1-2 page white paper
 - Schedule a Visit
- Keep up-to-date with BAA’s
- Attend Agency Workshops & Briefings
- Volunteer to serve the agency

…Know & Be Known!