Use all CAPITALS, single space within the title, followed by double space. Use the style "Title"

ABSTRACT

TITLE

Use all CAPITALS followed by double space Use the style "CAPITAL HEADING". Abstract should be 1 page for MS & 2 pages for PhD

Use all small letters followed by single space. Use the style "By Author"

by FirstName LastName

Text of paragraph one.

Text of paragraph two. Note the indent.

	Capitaliz	e Each V	Vord,	
	single spaced followed			
	by 3	6 points		
	Use the s	style "Au	thor"	
Spacing				
Before	0 pt ≑	Li <u>n</u> e spacing:	<u>A</u> t:	
A <u>f</u> ter:	36 pt ≑	Double	~	-

Don't add space between paragraphs of the same style

The first paragraph is always flushed to the left. Followed by the first line of all other paragraphs is indented.

The margins for the entire document must be set at 1.5" on the left and 1" on the right.

ABSTRACT

ADAPTIVE SPACE-TIME PROCESSING FOR WIRELESS COMMUNICATIONS

by Xiao Cheng Bernstein

Adaptive space-time processing techniques have been considered in the past to increase the capacity of two major, multiple-access wireless communication systems: Time Division Multiple Access (TDMA) and Code Division Multiple Access (CDMA). Space processing uses multiple antennas which, in turn, provide alternative signal paths in order to cancel interferences and combat multipath fading. In this investigation, the *eigencanceler* method was used to evaluate theoretical optimum combinations. The feasible *direct matrix inverse* (DMI) technique was also evaluated. An analysis of the system performance revealed that when data sets are small, the eigencanceler technique is superior to the DMI technique. A simple projection-based algorithm was proposed and its performance analyzed.

The capacity of CDMA communication systems is normally restricted by multiple-access interferences (MAI). It was shown that spatial and temporal processing can be combined to increase the capacity of CDMA-based wireless communications systems. The degrees of freedom provided by space-time processing were exploited to combat both fading and MAI. Specifically, the following methods were considered: (1) space-time diversity, (2) cascade optimum spatial-diversity temporal, (3) cascade

optimum spatial-optimum temporal, and (4) joint-domain optimum processing. It was proved that, due to its interference cancellation capability, *optimum combining* provides significantly better performance than diversity techniques. Use all CAPITALS, single space within the title, followed by double space. Use the style "Title"

TITLE

You have 16 or 18 single spaces here depending on the length of your title. Make sure your name appears in the middle of the page.

> by FirstName LastName

Use all small letters followed by single space. Use the style "By Author"

Capitalize Each Word, single spaced followed by 36 points. Use the style "Author"

 \sim

-

36 pt 😩 Double

Don't add space between paragraphs of the same style

Spacing <u>B</u>efore:

After:

You need to have 14 or 15 single spaces here.

A Dissertation Submitted to the Faculty of New Jersey Institute of Technology In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Program

Department

Use two single spaces after department area.

Write in centered alignment with single space. Make sure you list the right title and department here. Use the style "NJIT Body"

Graduation Date (either January, May or August + year)

ADAPTIVE SPACE-TIME PROCESSING FOR WIRELESS COMMUNICATIONS

by Xiao Cheng Bernstein

A Dissertation Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering

Department of Electrical and Computer Engineering

January 1996

Copyright © Year by FirstName LastName

ALL RIGHTS RESERVED

Copyright page is typically used only for the Ph.D. Dissertation; For the Master's Thesis, a blank page is inserted. Use the style "Normal" with double spaced. Copyright © 1996 by Xiao Cheng Bernstein

ALL RIGHTS RESERVED

Use the style "CAPITAL HEADING"

Use all CAPITALS, single space within the title, followed by double space. Use the style "Title"

APPROVAL PAGE

TITLE FirstName LastName

Capitalize Each Word, single spaced followed by 36 points. Use the style "Author" Spacing Before: Det Uge spacing: At Atter: 36 pt Double V III

Date

Name, Dissertation Advisor Title, College or Place of Employment

Name, Committee Member Title, College or Place of Employment

At least five committee members are required for PhD N Dissertation & T three committee members for Master's Thesis. Use the style "Body Text" N Single spaces and left alignment.

Name, Committee Member Title, College or Place of Employment

Name, Committee Member Title, College or Place of Employment

Name, Committee Member Title, College or Place of Employment

Please list any external members at the end, including their location details. Date

Date

Date

Date

APPROVAL PAGE

ADAPTIVE SPACE-TIME PROCESSING FOR WIRELESS COMMUNICATIONS

Xiao Cheng Bernstein

Dr. Alexander M. Haimovich, Dissertation Advisor	Date
Associate Professor of Electrical and Computer Engineering, NJIT	
Dr. Yeheskel Bar-Ness, Committee Member	Date
Distinguished Professor of Electrical and Computer Engineering, NJIT	Date
Distinguished Floressor of Electrical and Computer Engineering, 1011	
Dr. Michael Porter, Committee Member	Date
Professor of Mathematics, NJIT	
Dr. Zoran Siveski, Committee Member	Date
Assistant Professor of Electrical and Computer Engineering, NJIT	
Dr. Jack H. Winters, Committee Member	Date

Member of Technical Staff, AT&T Bell Laboratories, Holmdel, NJ

Use the "TAB" key for alignment.

BIOGRAPHICAL SKETCH

Author:	FirstName LastName	
Degree:	Master of Science / Doctor of Philosophy	
Date:	Month and Year (you are graduating)	Use the style "Normal" with double spacing.
Date of Birth:	Month, Day, Year (For e.g., November 3, 1992)	
Place of Birth:	City, State, Country (if outside US)	Use bullets and
		single space within

Undergraduate and Graduate Education:

Use bullets and single space within the matter, followed by double space within each entry.

- Most recent education experience goes here
- The further down you go, the older the education experience for example, a Master's would go above your Bachelor's degree
- Entries include degree, university, location of university, and year awarded

Example:

 Doctor of Philosophy in Computer Science, New Jersey Institute of Technology, Newark, New Jersey 2024

Major:

Presentations and Publications:

- Most recent publication goes first.
- The further down you go, the older the presentations for example, a 2018 presentation would go above a presentation from 2015.

Your major / program (Indicate your current program)

- This section may be excluded if you do not have any relevant presentations or publications.
- You can list in preparation, submitted, under review publications.

This is the first page where a page number should occur which is the fourth page in count (Roman numerals). It should be centered, **bold**, and 12pt like the text. It should be ½ inch from the physical bottom of the page within a footer.

BIOGRAPHICAL SKETCH

Author:	Xiao Cheng Bernstein
---------	----------------------

Degree: Doctor of Philosophy

Date: January 1996

Date of Birth: November 3, 1965

Place of Birth: Shanghai, P. R. China

Undergraduate and Graduate Education:

- Doctor of Philosophy in Electrical Engineering, New Jersey Institute of Technology, Newark, NJ, 1996
- Master of Science in Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China, 1991
- Bachelor of Science in Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China, 1988

Major: Electrical Engineering

Presentations and Publications:

- Xiao C. Wu and Alexander M. Haimovich, "Adaptive arrays for increased performance in mobile communications," The Sixth International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'95), Toronto, Canada, September 1995.
- Xiao C. Wu and Alexander M. Haimovich, "Space-time processing for CDMA communications," Proceedings of the 1995 Conference on Information Science and Systems, Baltimore, MD, pp. 371-376, March 1995.
- Xiao C. Wu and Alexander M. Haimovich, "A simple projection based adaptive array with applications to mobile communications," Proceedings of the 1994 Adaptive Antenna Systems Symposium, Melville, NY, pp. 37-42, November 1994.

Write in the Center Alignment with single spaced. Use the style "Normal" and in *Italics*

Samples are available for viewing in the Office of Graduate Studies

< Write personal dedication > < Samples are available in the Office of Graduate Studies >

ACKNOWLEDGMENTS

The first paragraph of this section is dedicated to the Thesis or Dissertation Advisor.

The second paragraph is indented and dedicated to Committee members.

The third paragraph is indented and dedicated to Funding source(s) and Technical support.

Subsequent paragraphs are indented and may include peers who were key to the

student's success.

Some also finish with family members.

Write in the Justify Alignment with Double spaced. Use the style "Normal"

ACKNOWLEDGMENTS

The order for this section is as follows: Thesis or Dissertation Advisor, Committee members, Funding source and Technical support. Many students include peers (by name please) who were key to their success and some also finish with family members.

TABLE OF CONTENTS

~		Chapter Title appear in all CAPITALS	D
C	hapter		Page
1.	INTRODUCTION		1
	1.1 Objective		
	1.1.1 Title o	of Subsection 1	
2.	LITERATURE REV	/IEW	
3.	METHEDOLOGY		
4.	DATA ANALYSIS.		6

The table of Contents should be created automatically. Ensure that you have used the built-in Heading styles (Heading 1, Heading 2, Heading 3 etc.) to format the titles and subtitles of your document. These styles are found in the "Styles" group on the "Home" tab.

Insert Table of Contents

1. Go to the "References" tab.

 Click on "Table of Contents" in the Table of Contents group.
Choose one of the built-in formats from the dropdown menu, or click on "Custom Table of Contents" to customize the appearance further.

Update Table of Contents: If you make changes to your document after inserting the table of contents, you'll need to update it to reflect those changes:

- 1. Right-click on the table of contents.
- 2. Choose "Update Field" from the context menu.
- 3. Select "Update entire table" and click "OK".

TABLE OF CONTENTS

C	hapter	Page
1	INTRODUCTION	1
	1.1 Objective	2
	1.2 Background Information	2
2	SPATIAL PROCESSING FOR TDMA SYSTEMS	7
	2.1 Problem Statement	8
	2.2 Eigenanalysis Filter Information	11
3	IMPLEMENTATION	28
	3.1 Adaptive Algorithms for the Eigencanceler	28
	3.1.1 Projection Algorithm	28
	3.1.2 Power Method	30
	3.2 A Stochastic Model For The Convergence Behavior of the Affine Projection Algorithm for Gaussian Inputs	31
4	SPACE-TIME PROCESSING FOR CDMA COMMUNICATIONS	37
	4.1 Signal Model	37
	4.2 Space-Time Combining Schemes	42
	4.2.1 Spatial Combiner	42
	4.2.2 Space-Time Combiner	44
	4.2.3 Test Preparation	46
	4.2.4 Wear Rate	47
	4.2.5 Friction Regimes	50

"Chapter" and "Page" have to be listed again on the second page of TABLE OF CONTENTS

TABLE OF CONTENTS

When TABLE OF CONTENTS is longer than one page, then insert (Continued) here

(Continued)

Ch	Chapter Pag		ige	
5.	DISCUSSIONS			. 25
	5.1	Key Fi	ndings	. 25
		5.1.1	Title of Subsection 1	. 28
6.	CON	CLUSI	DNS	. 44
7.	APP	ENDIX	A – ENTER TITLE HERE	. 45
8.	REF	ERENC	ES	. 46

TABLE OF CONTENTS (Continued)

Chapter		
4.2.6 Antiwear Additives	52	
5 CONCLUSION	57	
APPENDIX A MATLAB SOURCE CODES FOR DETECTION WITH WAVELETS	91	
A.1 Signal Model	91	
A.2 Space-Time Combining Schemes	92	
APPENDIX B CORRELATION OF CDMA SIGNALS	93	
B.1 Signal Model	93	
B.2 Space-Time Combining Schemes	96	
REFERENCES	98	

LIST OF TABLES

Table		Page
x.1	Signal Model (Capitalize Each Word)	X
x.2	Space-Time Combining Schemes	XX

Capitalize Each Word in Title for this table

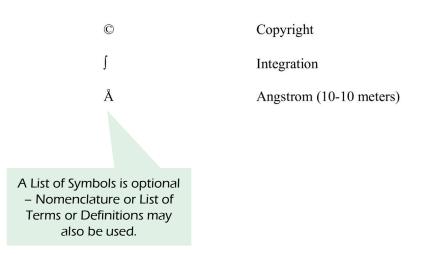
This is a simple table with three columns

LIST OF TABLES

Tabl	le	Page
2.1	Frequency Reuse Factor and CIR	24
2.2	Optimization Mechanism	29
2.3	Communication System	34
3.1	Cascade Space-Time Receiver Configurations	46
4.1	Signal to Noise Ratio	51
4.2	Channel Model	53
4.3	Performance of ST Receiver as a Function of Number of Active Users L	55
4.4	Performance of ST Receiver as a Function of Number of Ratio q	56
4.5	Performance of ST Receiver as a Function of Number of Ratio p	56
4.6	Outage Probability vs. the Capacity with Perfect Power Control	70

LIST OF FIGURES

Figure		Page
x.1	Performance of ST receiver as a function of number of ratio q	x
x.2	The average BER vs. the average received SNR with on interference	XX


Description begins with a capital letter, followed by sentence case. Acronyms, and proper names are capitalized.

This is a simple table with three columns

LIST OF FIGURES

Figu	Figure		
2.1	The average BER vs. the average received SNR with one Interference INR=2 dB and (a) K=20, (b) K=50 (Analytical Results)	17	
3.1	The average BER vs. the average received SNR with on interference (simulation results)		
3.2	IS-54 Data Model	31	
3.3	IS-54 Slot Formats	31	
4.1	IS-136 System	49	
4.2	Channel Model	53	
4.3	Performance of ST receiver as a function of number of active users L	55	
4.4	Performance of ST receiver as a function of number of ratio q	56	
4.5	Performance of ST receiver as a function of number of ratio p	56	
5.1	Outage probability vs. the capacity with perfect power control	70	

LIST OF SYMBOLS (Optional)

This is a simple table with two columns

LIST OF SYMBOLS

©	Copyright
ſ	Integration
Å	Angstrom (10 ⁻¹⁰ meters)
SAR	Specific Absorption Rate
П	3.415
9	Female
®	Registered
*	Approximately
	Spade Suit
∂	Partial Differential
#	Number Sign
¢	Cent Sign

LIST OF DEFINITIONS (Optional)

Accuracy	How closely an instrument measures the true or actual value of the process variable being measured or sensed.
Acidic	The condition of water or soil which contains a sufficient amount of acid substances to lower the pH below 7.0.
Alkaline	The condition of water or soil which contains a sufficient amount of alkali substances to raise the pH above 7.0.
Effective range	That portion of the design range (usually upper 90 percent) in which an instrument has acceptable accuracy.

A List of Definitions is optional - Nomenclature or List of Terms may also be used.

This is a simple table with two columns

LIST OF DEFINITIONS

Accuracy	How closely an instrument measures the true or actual value of the process variable being measured or sensed.
Acidic	The condition of water or soil which contains a sufficient amount of acid substances to lower the pH below 7.0.
Alkaline	The condition of water or soil which contains a sufficient amount of alkali substances to raise the pH above 7.0.
Analog	The readout of an instrument by a pointer (or other indicating means) against a dial or scale.
Cohesion	Molecular attraction which holds two particles together.
Effective range	That portion of the design range (usually upper 90 percent) in which an instrument has acceptable accuracy.
Linearity	How closely an instrument measures actual values of a variable through its effective range; a measure used to determine the accuracy of an instrument.
Surfactant	Abbreviation for surface-active agent. The active agent in detergents that possesses a high cleaning ability.
Standard	A physical or chemical quantity whose value is known exactly, and is used to calibrate or standardize instruments.