### Help students learn physics



**Professor Gordon Thomas** 





Inspiring young minds for college access and success in Science, Technology, Engineering, and Mathematics (STEM)

## Ideas to Help Students Learn Physics A Hands-On Workshop

- Led by: Prof. Gordon Thomas, NJIT Physics
- February 7, 2019 Central King Building 116

 Co-Sponsors: NJAAPT, NJIT Physics, NJIT College of Science and Liberal Arts and NJIT CPCP

### Agenda

- 8:30 Registration and Continental Breakfast
- 9:00 **Welcome** and Introductions
- Dr. Jacqueline L. Cusack,
- Executive Director of the NJIT Center for Pre-College Programs
- Dr. Kevin Belfield, Dean, NJIT College of Sciences and Liberal Arts
- 9:10 **Speed:** Hands-on Experiments, Formative Questions, Discussion among teachers
- 10:40 A Walk on the Roof
- 10:50 **Acceleration:** Experiments, Questions, Discussion
- 12:00 **Buffet Lunch**
- 1:00 **Circular motion:** Experiments, Questions, Discussion
- 2:15 **General discussion** and evaluation

### **Workshop Goals**



- Be able to use a teaching method that launches pre-college students into college, based on the effectiveness of this method in Prof. Thomas' college physics course.
- Integrate into this method the quantitative analysis that is central to the NJSLS.
- Be able to use remedies for potential stumbling blocks in the transition from pre-college science to success in college physics – remedies that link with the NJSLS.

### Extra introductory info:

### Comments on what helps students

- 5 steps of my version of active learning:
  - Mini lecture
  - Hands on demo
  - Question by yourself
  - Discuss with group
  - Summary

### Slowing to a stop







$$v_{ave}=x/t$$
;  $v_{ave}=(v+v_0)/2$ 

### Experiment

Measure the average speed of a ball that rolls to a stop.

### Question 1

 A student rolls a ball across a table. It comes to a stop in 0.4 m and a time 2.0 s. What is its average speed in m/s?

- a. 2
- b. 0.05
- c. 0.5
- d. 0.2
- e. 0.8

### Discuss Question 1

### Question 2

 A student rolls a ball across a table. It comes to a stop in 0.8 m and a time 2 s. With what speed, in m/s, did the student launch the ball?

- a. 1.6
- b. 3.2
- c. 5.0
- d. 0.4
- e. 0.8

### Discuss Question 2

#### Walk on the roof

Drop a ball.

Measure the height and the time of the fall.

Guard the landing spot.

Come back to study acceleration.



## Roof: Falling from rest





$$v_{ave} = x/t$$
;  $v_{ave} = (v+v_0)/2$   
 $v_0 = 0$ ;  $v = 2x/t$ ;  $a = v/t$ 

## Review: Slowing to a stop





$$v_{ave} = x/t$$
;  $v_{ave} = (v+v_0)/2$   
v=0

# -Acceleration(slowing down)



$$a = (v - v_0)/t = -v_0/t$$

### Experiment

Measure the average acceleration of a ball that rolls to a stop.

### Question 3

 A student rolls a ball across a table. It comes to a stop in 0.4 m and a time 2.0 s, so the average speed is 0.2m/s and so the initial speed is 0.8m/s and the final speed is 0. What is the acceleration in m/s<sup>2</sup>?

```
a. -2
```

b. -0.05

c. -0.5

d. -0.2

e. -0.8

### Discuss Question 3

### Question 4

(same problem backwards): a car skids to a stop in 5 seconds. The tires on that road surface produce an acceleration of  $-0.5 \text{ m/s}^2$ . What was the speed, in m/s, when the driver put on the brakes?

- a. 2.5
- b. 5
- c. 1.25
- d. 5.6
- e. 0.1

### Discussion of Question 4

### 12 noon



### Slowing to a stop



$$v_{ave}=x/t$$
;  $v_{ave}=(v+v_0)/2$ ;  $\theta=x/R$   
 $\omega_{ave}=\theta/t$ ;  $\omega_{ave}=(\omega+\omega_0)/2$ 

# -Acceleration(slowing down)



 $\alpha_{ave} = (\varpi - \varpi_0)/t$ 



Time t

### Experiment

Measure the average speed of a spinner as it rolls to a stop.

### Question 5

A student spins a spinner. It comes to a stop in 3 Radians and a time 2.0 s, so the average speed is 1.5 Radians/s and so, the initial speed is 3.0 Radians/s and the final speed is 0. What is the angular acceleration, in Radians/s<sup>2</sup>?

- a. -2
- b. -0.05
- c. -0.5
- d. -0.2
- e. -0.8

### Final discussion

#### Contact us

Professor Gordon Thomas
NJIT Physics Department
College of Science and Liberal Arts
482 Tiernan Hall
University Heights
Newark, NJ 07102-1982
973-596-3558
gordon.a.thomas@njit.edu

Barbara Weller, Ed.D.
School Engagement Advisor
NJIT Center for Pre-College Programs
518 Campbell Hall
University Heights
Newark, NJ 07102-1982
973-596-5492
weller@njit.edu

Levelle Burr-Alexander, Ed.D.
Director of Special Projects
NJIT Center for Pre-College Programs
418 Campbell Hall
University Heights
Newark, NJ 07102-1982
973-596-3423
burralex@njit.edu