I Want to Hold Your Hand

The Science and Biomechanical Engineering of Replacement Body Parts

Dr. Levelle Burr-Alexander Dr. Barbara Elder Weller

Science, Math & Engineering

- Science study of the physical and natural world (what we can see and also what we can't see)
- Math study of logic, number, shape and arrangement
- Engineering application of Math, Science and Technology to solve real-world problems

How do Scientists Solve Problems?

Scientific Method

Classic Make Observations Ask a Question Form Hypotheses Test Hypotheses Analyze Results

How do engineers solve problems?

Today's Problem: Build a hand that works

- How does a human hand work?
 - Try it yourself
 - Research
 - Watch a video

- What do we know from science that can help us?
 - Physics
 - Mechanics Physiology
 - Biology -
 - Anatomy
 - Chemistry

We are complex!!

Center for Pre-College Programs

joint

https://youtu.be/dMUMxm3O0Cc

Design Constraints

- Build a model to *learn*
- Start with something simpler: What do we really want to learn?

How does one finger move?

- Bones
- Joints (connections)
- Muscles
- Ligaments
- Nerves / Brain (controller)

Build a Model Finger

- Research: How does your finger move?
- Design a model using the materials provided. Make a sketch first.
- Build
- Test
- Share with another group what researchers learn from each other How did the materials limit your design?

Biomimicry

The Goal for Your Model Hand Pick up an object and drop it in the basket

Build a model hand

- Palm
- Each child builds one finger
 - Fourth "finger" is the thumb
 - How to attach?

Materials	
9 Narrow Rubber Bands	Scissors
3 Coffee Stirrers	35 cm Nylon Cord
Cardboard	Centimeter Ruler
Tape and Scissors	Pen

Steps in Building Fingers

New Jersey Institute of Technology

Analyzing and Reporting Results

- What would you change for your next model?
- What factors might you have to consider if you were really building a working hand?
 - Anatomy / Physiology
 - Electronics Nanotechnology Innovation Center @ NJIT
 - Materials weight / safe for human body / cost
 - Durability
 - Cost
 - Ease of maintenance / Cleaning
 - Aesthetics manufactured skin Dr. Treena Arinzeh lab @
 NJIT
 - Other ...

NULT New Jersey Institute of Technology

Where is research taking us next?

- Dexter and inflatable hands
- Video games to learn how to use prostheses
- Tissue engineering: <u>Dr. Treena Arinzeh</u>, NJ
- NJIT <u>research areas</u> in biomedical engineering
- NJIT biomedical research centers
- NJIT <u>Microfabrication Innovation Center</u>

Thank you for being part of our workshop. For further information on CPCP:

Dr. Levelle Burr-Alexander <u>burralex@njit.edu</u>

Dr. Barbara Elder Weller weller@njit.edu

Campus Tours

Google Earth view

https://earth.google.com/web/@40.74282357,-74.1769588,45.22207285a,761.33333367d,35y,-103.71896964h,44.99989893t,0r/data=CmUaYxJdCiUweDg5YzI1MzdkOThjMzk2Zjk6MHhiOTdj Mjg3YTJIZjk1ZjQzGa69qg4UX0RAIRCgIWpVi1LAKiJOZXcgSmVyc2V5IEluc3RpdHV0ZSBvZiB UZWNobm9sb2d5GAIgAQ

Big Bear Solar Observatory San Bernardino CA

https://en.wikipedia.org/wiki/Big_Bear_Solar_Observatory http://www.bbso.njit.edu/new_virtual_tour.html http://www.bbso.njit.edu/new_tour/h_alpha.html

Inside the dorms http://virtualhousing.njit.edu/

