

Sail Away

Carolina Yanez

IEEE TISP Session NJIT, Newark 26 January 2019

Sail Away Lesson

Lesson Synopsis

 Working in teams, students design a sailboat out of everyday objects that can <u>harness wind</u> <u>energy from a fan breeze</u>, <u>stay afloat with a set</u> <u>load</u>, and <u>sail a set distance without sinking</u>

Demonstrating LIFT

Identifying the Key Parts

- Hull
 - The primary structural body of a vessel, not including superstructure, masts or rigging
- Keel
 A boat's fixed underwater part used to prevent sideways drift and provide stability
- Rudder
 A boat's movable underwater steering board

Tilting

Your Challenge

- Design a sailboat that...
 - Has the smallest sail area possible, but still
 - Travels the length of the trough (33.5 inches) in less than 10 seconds, and
 - Supports a payload of four washers of total weight of 5.6 oz
 - Washers should not sink the boat nor be dropped

Materials

- Plastic water bottles
- Aluminum Foil
- Cardboard
- String
- Binder clips
- Plastic wrap
- Toothpicks
- Craft sticks
- Rubberbands

Technology University

for Humanity

Procedure

- Divide into teams of 2 or 3 members
 - Your group consists of you neighbors at the table
- Review the requirements
- Discuss a solution and create a sketch of your design
 - Create at least one sketch before you start building
- Build a model of your design with given materials
- Sketch the built model, provide the measured sail area
- Test your model

Testing Procedure

Goal 1: Smallest sail area possible

Goal 2: Travel time less than 10 seconds

(without sinking or dropping the weight)

Reflection

- Were you able to create a boat that could hold weight, catch the wind, and travel a distance?
- If you did, did you need to rework your boat during the testing process?
 - What did you need to change about your boat to make it meet the challenge?
- What aspects of other team's boats did you find interesting? Where there aspects of other designs you wish you had incorporated into your own team's boat?

References (websites with information on the physics of sailboats)

- http://www.real-world-physics-problems.com/physics-of-sailing.html
- http://physicsbuzz.physicscentral.com/2015/05/thephysics-of-sailing-how-does.html
- http://newt.phys.unsw.edu.au/~jw/sailing.html
- Sailing Simulator: http://www.nationalgeographic.com/volvooceanrace/interactives/sailing/index.html
- http://physicsforarchitects.com/sailing-against-the-wind

QUESTIONS AND COMMENTS

