MODULE TEMPLATE

MODULE TOPIC:
Think Like a Scientist to Solve a Problem

STANDARD(S) & INDICATOR(S):
(Note: This section should include all standards listed in the lessons.)
5.1.12.B.1: Design investigations, collect evidence, analyze data, and evaluate evidence to determine measures of central tendencies, causal/correlational relationships, and anomalous data.
5.1.12.D.1: Engage in multiple forms of discussion in order to process, make sense of, and learn from others’ ideas, observations, and experiences.
5.3.12.A.1: Represent and explain the relationship between the structure and function of each class of complex molecules using a variety of models.

OBJECTIVE(S):
(Note: This section should include all objectives listed in the lessons.)
• Apply Scientific method to solve a problem.
• Create different types of graph representing data obtained during lab activity, and identifying correctly independent and dependent variable.
• Apply scientific principles to build and refine standards for data collection, posing controls, and presenting evidence.
• Analyze structure and function of macromolecules

LIST OF LESSONS:
Lesson 1: Scientific thinking skills
Lesson 2: Structure and Function of Macromolecules

REFERENCES:
LESSON TOPIC:
Scientific thinking skills

STANDARD(S) & INDICATOR(S):
5.1.12.A.1: Refine interrelationships among concepts and patterns of evidence found in different central scientific explanations.
5.1.12.B.1: Design investigations, collect evidence, analyze data, and evaluate evidence to determine measures of central tendencies, causal/correlational relationships, and anomalous data.
5.1.12.B.3: Revise predictions and explanations using evidence, and connect explanations/arguments to established scientific knowledge, models, and theories.
5.1.12.C.1: Reflect on and revise understandings as new evidence emerges.
5.1.12.D.1: Engage in multiple forms of discussion in order to process, make sense of, and learn from others’ ideas, observations, and experiences.

OBJECTIVE(S): Students will be able to:
✓ Explain the usage and steps of the scientific method in pair-share setting using their note-taking guide if needed.
✓ Apply Scientific method to solve a problem or answer a question:
 - Marshmallow challenge
 - Flashlight activity
 - Jumping jack activity
✓ Identify experimental and control group during an experiment.
✓ Compare and contrast independent and dependent variable.
✓ Create different types of graph representing data obtained during lab activity, and identify correctly independent and dependent variable.

CLASSROOM ACTIVITY DESCRIPTION
Learning Experience
Fill in Note-taking guide (helps organize ideas and binder).
• Marshmallow challenge
 • Work in groups
 • Apply scientific method while having fun
• Obtain & present Results
• interdisciplinary (engineering)

Flashlight Activity
✓ Work in pair-share setting
Research Experiences for Teachers (RET)
Center for Pre-College Programs
New Jersey Institute of Technology

✓ Explain scientific method
✓ Organize ideas
✓ Apply scientific method (hands on activity)

Jumping Jack Activity
✓ Research topic
✓ Conduct experiment
✓ Create tables, graphs, and diagrams for data/results
✓ Analysis of results
✓ Create lab report
✓ Involve HOTS (analysis)

STUDENT ASSESSMENT OUTCOMES:
• Complete note-taking guide (daily grade)
• Complete worksheets created on application of scientific method.
• Apply scientific method to different hands on activities:
 • Marshmallow challenge
 • Flashlight activity
 • Simpsons’ worksheet
 • Solving Farmer Joe’s Case
 • Jumping jack activity.
• Create graphs for data obtained during lab activity.
• Write lab report, describing their findings during lab activity.
• Review activity (inner & outer circle)
Lesson Plan Template
Research Experiences for Teachers (RET)
Center for Pre-College Programs
New Jersey Institute of Technology

LESSON 2.

LESSON TOPIC:
Structure and Function of Macromolecules

OBJECTIVE(S): Students will be able to:
✓ Define in their own words: organic compounds, biomolecules, macromolecules, and monomers using a graphic organizer.
✓ Describe the structures and functions of each of the four groups of macromolecules
✓ Compare and contrast carbohydrates, proteins, and lipids.
✓ Analyze the correlation between food, macromolecule and energy.
✓ Analyze which solution is a carbohydrate, lipid, starch, and protein by using chemical indicators.
✓ Define in their own words: organic compounds, biomolecules, macromolecules, and monomers using a graphic organizer.
✓ Describe the structures and functions of each of the four groups of macromolecules
✓ Compare and contrast carbohydrates, proteins, and lipids.
✓ Analyze the correlation between food, macromolecule and energy.
✓ Analyze which solution is a carbohydrate, lipid, starch, and protein by using chemical indicators.

CLASSROOM ACTIVITY DESCRIPTION
• Understand macromolecule structure and function.
• Conduct biomolecule testing experiment and solve the case of Who took Juan’s iPod.

Learning Experience
➢ Exploration phase:
 ✓ Analyze the saying “You are what you eat”
 ✓ Graphic organizer of a typical meal
➢ Explanation:
 ✓ Note-taking guide (Macromolecules)
 ✓ Activities/projects
➢ Application:
 ✓ 4 corner activity
 ✓ Graffiti activity
 ✓ Lab activity (divided in 2)

PARAMETERS TO EVALUATE STUDENT WORK PRODUCTS:
✓ Lab report
✓ Superfood project/ gallery walk
This material is based upon work supported by the National Science Foundation under Grant Nos. EEC-0908889

Copyright © 2012 by the Center for Pre-College Programs, of the New Jersey Institute of Technology. All Rights Reserved.

Supporting Program: Center for Pre-College Programs, at the New Jersey Institute of Technology

Contributors
Angela Ramirez (Union City High School, Union City, NJ), Primary Author
Howard Kimmel, Levelle Burr-Alexander, John Carpinelli - Center for pre-College Programs, NJIT
Chris D’Ambrose, Dr. Ramana Susarla, Dr. Lucas Sievens Figueroa, Dr. James Scicolone
Rajesh Dave - C-SOPS, NJIT

Lesson Plan Template
Research Experiences for Teachers (RET)
Center for Pre-College Programs & Newark College of Engineering
New Jersey Institute of Technology