DEVELOPING AN INSTRUCTIONAL MODULE

Howard Kimmel
kimmel@adm.njit.edu

John Carpinelli
Carpinelli@adm.njit.edu

and

Levelle Burr-Alexander
Burr-alexander@adm.njit.edu

Center for Pre-College Programs
New Jersey Institute of Technology
Key Questions for Planning a Learning Experience for Students

• What do I expect students to learn?
 – Expectations

• What experiences will contribute to learning? What must I include?
 – Experiences

• How will I know that they’ve learned it? How do I design my assessment to measure the learning that I want?
 – Assessment
Basic Components of a Standards-Based Lesson Plan:
Learning Objectives and Outcomes

• Specification of desired skills and knowledge.

• Opportunities for students to acquire desired skills and knowledge.

• Assess and document acquisition of desired skills and knowledge.
Assessment - Provide assessment tools/activities for teachers to assess the learning objectives described earlier.

How do you know if the students “got it” during the lesson and after the lesson? Assessments should gauge what the students know about the topic at the beginning, and whether the students met the learning objectives at the end.

Educational Standards and Indicators

• List up to 4 indicators of the standards that students would learn as a result of completing this lesson or activity.
• Treat the indicators like learning objectives, and it should be clear in the curriculum where students will learn them.
• Listing skills and/or knowledge from the indicators that students will actually learn from the educational experience.
OUTCOMES TEMPLATE

• TOPIC:

• SKILL/KNOWLEDGE TO BE ACQUIRED (LEARNING OBJECTIVES):

• STANDARD(S) & PERFORMANCE INDICATOR(S):

• HOW WILL SKILL/KNOWLEDGE BE ACQUIRED (INSTRUCTION):

• HOW WILL STUDENTS DEMONSTRATE ACQUISITION OF SKILL/KNOWLEDGE (ASSESSMENT):
RET 2012
New Jersey Institute of Technology

MODULE DEVELOPMENT – OUTCOMES MATRIX

<table>
<thead>
<tr>
<th></th>
<th>MODULE</th>
<th>LESSON # 1</th>
<th>LESSON # 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic Title</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Objectives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students will be able to:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard(s) and Performance(s) Indicators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Experience (Instructional Plan - Summary)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Assessment (Demonstration of Acquired Skills & Knowledge)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic Title</td>
<td>Lesson Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication and Documentation in Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Objective(s)</td>
<td>Construct a device or object using a given bag of materials.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students will be able to:</td>
<td>Describe the construction of the device or object that will allow other students</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to create that product.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard(s) & Performance Indicator(s)</td>
<td>NJCCCS 5.1.12.D1: Engage in multiple forms of discussion in order to process,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>make sense of, and learn from others’ ideas, observations, and experiences.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NJCCCS 5.1.12.D2: Represent ideas using literal representations, such as graphs,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tables, journals, concept maps, and diagrams.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCS-ELA.W.4. Produce clear and coherent writing in which the development,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>organization, and style are appropriate to task, purpose, and audience.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Experience (Instructional Plan - Summary)</td>
<td>Teams will construct a device and document how they made their construction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Another team will try to recreate the construction of the other team.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Assessment (Demonstration of Acquired Skills & Knowledge)</td>
<td>The documentation of the construction of the device is used by another time to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>successfully construct the same device.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Visual Models of Solutions and Concentrations

An Educator's Reference Desk
Lesson Plan
Lesson Plan #: AELP-CHM0050
Lesson Topic: Models of Solutions and Concentrations

• **OBJECTIVES:** Students will be able to:
 – Discuss pure solutions.
 – Discuss dilute solutions.
 – Discuss concentrated solutions.
 – Discuss the volumetric changes which occur.
 – Apply use of the model to future learning.

• **Classroom activities:**
 – Students are provided with two beakers, each containing different size plastic spheres.
 – The volume of the spheres in each beaker is measured.
 – The smaller spheres are poured into the beaker of larger spheres and the volume of the mix of spheres is measured.
MODULE DEVELOPMENT – OUTCOMES MATRIX

<table>
<thead>
<tr>
<th>Title</th>
<th>Models of Solutions and Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description (one sentence)</td>
<td>A hands on model to work with which will demonstrate the manner in which solutions are formed.</td>
</tr>
<tr>
<td>Learning Objective(s)</td>
<td>- Discuss pure solutions.</td>
</tr>
<tr>
<td>Students will be able to:</td>
<td>- Discuss dilute solutions.</td>
</tr>
<tr>
<td></td>
<td>- Discuss concentrated solutions.</td>
</tr>
<tr>
<td></td>
<td>- Discuss the volumetric changes which occur.</td>
</tr>
<tr>
<td></td>
<td>- Apply use of the model to future learning</td>
</tr>
<tr>
<td>Standards & Performance Indicators</td>
<td>(2009) 5.1.8.A.3 Use scientific principles and models to frame and synthesize scientific arguments and pose theories.</td>
</tr>
<tr>
<td></td>
<td>(2005) 5.1.8.B.3. Collect, organize, and interpret the data that result from experiments.</td>
</tr>
</tbody>
</table>
Preparing Learning Outcome Chart

<table>
<thead>
<tr>
<th>Behavioral Verb</th>
<th>Content Skills & Knowledge</th>
<th>Performance Indicator</th>
<th>Student Work Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>What action will students take to acquire the content skills and knowledge?</td>
<td>What are the specific content knowledge & skill the students will acquire as a result of learning?</td>
<td>What is the performance indicator the students will use to show acquisition of knowledge?</td>
<td>What are the student work products that will be used to assess their acquired content skills and knowledge?</td>
</tr>
</tbody>
</table>

Learning Outcome: Students are able to (behavioral verb) + (specific content skills/knowledge) + (performance indicator) + (student work product).
<table>
<thead>
<tr>
<th>Title</th>
<th>Models of Solutions and Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description (one sentence)</td>
<td>A hands on model to work with which will demonstrate the manner in which solutions are formed.</td>
</tr>
<tr>
<td>Learning Objective(s)</td>
<td></td>
</tr>
<tr>
<td>Students will be able to:</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Models of Solutions and Concentrations</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Learning Objective(s)</td>
<td></td>
</tr>
<tr>
<td>Students will be able to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Experience</td>
<td>Students are provided with two beakers, each containing different size plastic spheres. The volume of the spheres in each beaker is measured. The smaller spheres are poured into the beaker of larger spheres and the volume of the mix of spheres is measured.</td>
</tr>
<tr>
<td>(Instructional Plan - Summary)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Assessment</td>
<td></td>
</tr>
<tr>
<td>(Demonstration of Acquired Skills & Knowledge)</td>
<td></td>
</tr>
</tbody>
</table>
Lesson Topic: Mass Transfer

• **Aim:** This practical aims to determine the rate of dissolution of boiled sweets in water and the factors which affect it.

• **Classroom activities:**
 – Rate of dissolution of a sucker is measured by measure the change in diameter as a function of time under different conditions.
 – A beaker of cold water is stirred at different stirrer speeds.
 – Rate of dissolution is measured at different temperatures.
Lesson Topic: Mass Transfer

• **Analysis:** Compare the change in diameter for the different conditions studied. Then try to determine relationships for the rate of dissolution of the sucker, using what you know about diffusion and mass transfer.

• **Discussion:** Explain the differences between the results and how the relationships you have found account for these differences.
Lesson Topic: Mass Transfer

- Quality of Lesson. Is it a good lesson?
- Learning Objectives?
- Assessment?
- Does the lesson need to be modified?
Lesson Topic: Mass Transfer

• Weaknesses:
 – Lacks specific statement of learning objectives.
 – Lacks specific statement of nature of student work product for assessment.

• Strengths. Provides opportunity for students:
 – to investigate a phenomenon, and collect, organize, and interpret the data that result from the experiments.
 – Conduct experiments that involve dependent & independent variables.
 – Collect and analyze data with emphasis on reproducibility of data and constraints on data collection.
Title

Mass Transfer

Brief Description (one sentence)

The rate of dissolution of a sucker is being measured at different temperatures, and at different stirring rates for a given temperature.

Learning Objective(s)

Students will be able to:

Standards & Performance Indicators

(2009) 5.1.8.B.1. Design investigations to collect, analyze, and evaluate evidence as part of building models and explanations.

(2005) 5.1.8.A.3. Recognize that the results of scientific investigations are seldom exactly the same and that replication is often necessary.

(2005) 5.1.8.B.3. Collect, organize, and interpret the data that result from experiments.

<table>
<thead>
<tr>
<th>Title</th>
<th>Mass Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Objective(s)</td>
<td>Students will be able to:</td>
</tr>
<tr>
<td>Students will be able to:</td>
<td></td>
</tr>
<tr>
<td>Learning Experience</td>
<td>The rate of dissolution of a sucker is being measured at different temperatures, and at different stirring rates for a given temperature. For a given run, students measure the change in the diameter of the sucker over time, without stirring, at a slow stirring rate, and at a faster stirring rate. Measurements are done at two different temperatures.</td>
</tr>
<tr>
<td>(Instructional Plan - Summary)</td>
<td></td>
</tr>
<tr>
<td>Student Assessment</td>
<td></td>
</tr>
<tr>
<td>(Demonstration of Acquired Skills & Knowledge)</td>
<td></td>
</tr>
</tbody>
</table>
THE BIG PICTURE
COMPONENTS OF A UNIT/MODULE

TITLE
Grade Levels
Related Subject Areas

INTRODUCTION/SUMMARY
Module Overview

TEACHER RESOURCES
Instructional Materials
Technological Resources

TITLES OF LESSON(S)
TITLE OF ACTIVITY(IES)
A series of two or more learning activities, or lessons, designed to help students explore specified key concepts to be taught

- Specification and organization of the key concepts to be learned.
- Definition of learning objectives that clearly state what students should know and be able to do at the end of the module.
- Identify and sequence lessons that develop the desired level of understanding.
- Within the module, each lesson should include learning objectives and desired outcomes of the lesson that are aligned with those of the module.
Engineering Lesson Plans on the Web

IEEE -
TryEngineering: www.tryengineering.org

National Science Digital Library (NSDL) – TeachEngineering: www.teachengineering.org

http://nsdl.org/browse/?subject=All (STEM)

The Educator’s Reference Desk - AskEric
http://www.eduref.org/Virtual/Lessons/

NJIT
New Jersey’s Science & Technology University
Exploring the structure of a Curricular Unit

TE Curricular Unit: Mixtures and Solutions
TE Curricular Unit: Mixtures and Solutions

Summary

Introductory concepts of mixtures and solutions & how mixtures and solutions, and atoms and molecules can influence new technologies developed by engineers:

1. Explores the fundamentals of atoms and their structure and the building blocks of matter (protons, electrons, neutrons).

2. Examines the properties of elements and the periodic table & the concepts of physical and chemical properties.

3. Introduces the properties of mixtures and solutions, including a comparison of different mixtures and solutions, their properties and their separation qualities.
TE Curricular Unit: Mixtures and Solutions

• Related Lessons
 – The Fundamental Building Blocks of Matter
 – Understanding Elements
 – Mix It Up

• Related Activities
 – Engineering and the Periodic Table
 – Gumdrop Atoms
 – Messin' with Mixtures
Lesson: The Fundamental Building Blocks of Matter

Learning Objectives: Students should be able to:
1. Define a molecule.
2. List the basic components and structure of the atom.

Activity: Gumdrop Atoms

Learning Objectives: Students should be able to:
1. List the basic components and structure of the atom
2. Identify the electrical charge of an atom and its subatomic particles
3. Explain how engineers use their knowledge of atoms to create new technologies
TE Lesson: Mix It Up

Learning Objectives - The students should be able to:

• Compare and contrast mixtures and solutions.
• Discuss methods for separating mixtures and solutions into their original components.
• Describe several engineering applications for mixtures and solutions.

Assessment

• Students categorize mixtures vs. solutions
• Concept Juggle
• Engineering/Writing Application
• Bingo (Vocabulary terms)
TE Activity: Messin' with Mixtures
Students investigate the properties of a heterogeneous mixture, trail mix.

Learning Objectives - Students should be able to:
• Discuss properties of mixtures and solutions.
• Discuss methods for separating mixtures and solutions into their original components.
• Describe several engineering applications for mixtures and solutions.

Assessment
• Worksheet.
• Engineering Application: Students write a "report" regarding the contaminated soil.
TE Lesson & Activity

• Learning Objectives - Students should be able to:
 – Discuss properties of mixtures and solutions.
 – Discuss methods for separating mixtures and solutions into their original components.
 – Describe several engineering applications for mixtures and solutions.

• Standards - TE Lesson: Mix It Up
 – 5. All matter is made up of atoms that are comprised of protons, neutrons and electrons and when a substance is made up of only one type of atom it is an element (Grades 6 - 8) [2007]
 – 5. There are interrelationships among science, technology and human activity that affect the world (Grades 6 - 8) [2007]

• Standards - TE Activity: Messin' with Mixtures
 – 2.1. Students know that matter has characteristic properties, which are related to its composition and structure. (Grades 0 - 12) [1995]
 – Standard 5. Students know and understand interrelationships among science, technology, and human activity and how they can affect the world. (Grades 0 - 12) [1995]
Lesson: Mix It Up

2.5. All matter is made up of atoms that are comprised of protons, neutrons and electrons and when a substance is made up of only one type of atom it is an element (Grades 6 - 8) [2007]

5.5. There are interrelationships among science, technology and human activity that affect the world (Grades 6 - 8) [2007]

Standard 2: 2. Mixtures of substances can be separated based on their properties (for example: solubilities, boiling points, densities and specific heat) (Grades 6 - 8) [2007].

Activity: Messin' with Mixtures

2.1 Students know that matter has characteristic properties, which are related to its composition and structure. (Grades 0 - 12) [1995]

Standard 5: Students know and understand interrelationships among science, technology, and human activity and how they can affect the world. (Grades 0 - 12) [1995]
Educational Standards - New Jersey Science
TE Lesson & Activity

- Learning Objectives - Students should be able to:
 - Discuss properties of mixtures and solutions.
 - Discuss methods for separating mixtures and solutions into their original components.
 - Describe several engineering applications for mixtures and solutions.

- Standards and Indicators – NJ Adopted 2002
 - 5.6.4.A.1. Sort materials based on physical characteristics that can be seen by using magnification.

- Standards and Indicators – NJ Adopted 2009
 - 5.2.2.A.1. Sort and describe objects based on the materials of which they are made and their physical properties.
• **Compose** an Outcomes Matrix to present your thoughts on the revision of your selected concept from Assignment #1 based on the Standards-based Lesson Planning presentation.
How to reach us….

• Howard Kimmel
 Kimmel@adm.njit.edu

• John Carpinelli
 Carpinelli@adm.njit.edu

• Levelle Burr-Alexander
 Burr-alexander@adm.njit.edu
 New Jersey Institute of Technology
 Center for Pre-College Programs
 Central Avenue Building - 2nd Floor
 University Heights
 Newark, New Jersey 07102
 (973) 596-6445
Q & A